Optimization of the Effective Shear Properties of a Bidirectionally Corrugated Sandwich Core Structure
نویسندگان
چکیده
The transverse shear stiffness of a newly-developed all-metal sandwich core structure is determined experimentally and numerically. The core structure is composed of a periodic array of domes which are introduced into an initially flat sheet through stamping. A finite element model of the stamping process is built and validated experimentally. A parametric study is performed to choose the stamping tool geometry such that the resulting core structure provides maximum shear stiffness for a given relative density. It is found that the optimal geometries for relative densities ranging from 0.2 to 0.35 all feature the same dome shape with the same height-to-width ratio. The simulation results also show that the estimated transverse shear strength of the proposed core structure is the same as that of hexagonal honeycombs of the same weight for high relative densities (greater than 0.35), but up to 30% smaller for low relative densities (lower than 0.2). In addition to numerical simulations of a representative unit cell, four-point bending experiments are performed on brazed prototype sandwich beams to validate the computational model. [DOI: 10.1115/1.4006941]
منابع مشابه
Improving the Performance of the Sandwich Panel with the Corrugated Core Filled with Metal Foam: Mathematical and Numerical Methods
A new type of composite structure with a metal foam is reinforced by the metal corrugated core, called metal-foam-filled sandwich panel with a corrugated or V-frame core, is modelled, simulated, and studied in this article. All types of samples with different relative densities of the foam are tested and analyzed under the drop hammer load. The sandwich panel included two aluminium face-sheet, ...
متن کاملOptimal Design of Sandwich Panels Using Multi-Objective Genetic Algorithm and Finite Element Method
Low weight and high load capacity are remarkable advantages of sandwich panels with corrugated core, which make them more considerable by engineering structure designers. It’s important to consider the limitations such as yielding and buckling as design constraints for optimal design of these panels. In this paper, multi-objective optimization of sandwich panels with corrugated core is carried ...
متن کاملEffect of Follower Force on Vibration Frequency of Magneto-Strictive-Faced Sandwich Plate with CNTR Composite Core
This study deals with the vibration response of sandwich plate with nano-composite core and smart magneto-strictive face sheets. Composite core is reinforced by carbon nanotubes (CNTs) and its effective elastic properties are obtained by the rule of Mixture. Terfenol-D films are used as the face sheets of sandwich due to magneto-mechanical coupling in magneto-strictive material (MsM). In order ...
متن کاملA Theoretical and Experimental Study of Failure Maps of Sandwich Beams with Composite Skins and Honeycomb Core
Failure maps of sandwich panels such as beam, plate and shell are of great importance in designing such structures. In this paper, failure maps of sandwich beams with composite skin and honeycomb core are obtained. The effect of transverse shear in skins and core and the effect of double walls of honeycomb core have been taken into account. Shear deformation of skins and core are assumed to be ...
متن کاملFree Vibration of a Thick Sandwich Plate Using Higher Order Shear Deformation Theory and DQM for Different Boundary Conditions
In this paper, the effect of different boundary conditions on the free vibration analysis response of a sandwich plate is presented using the higher order shear deformation theory. The face sheets are orthotropic laminated composites that follow the first order shear deformation theory (FSDT) based on the Rissners-Mindlin (RM) kinematics field. The motion equations are derived considering the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012